Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.973
Filter
2.
Trials ; 25(1): 227, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561815

ABSTRACT

INTRODUCTION: The lack of safe, effective, and simple short-course regimens (SCRs) for multidrug-resistant/rifampicin-resistant tuberculosis (MDR/RR-TB) treatment has significantly impeded TB control efforts in China. METHODS: This phase 4, randomized, open-label, controlled, non-inferiority trial aims to assess the efficacy and safety of a 9-month all-oral SCR containing bedaquiline (BDQ) versus an all-oral SCR without BDQ for adult MDR-TB patients (18-65 years) in China. The trial design mainly mirrors that of the "Evaluation of a Standardized Treatment Regimen of Anti-Tuberculosis Drugs for Patients with MDR-TB" (STREAM) stage 2 study, while also incorporating programmatic data from South Africa and the 2019 consensus recommendations of Chinese MDR/RR-TB treatment experts. Experimental arm participants will receive a modified STREAM regimen C that replaces three group C drugs, ethambutol (EMB), pyrazinamide (PZA), and prothionamide (PTO), with two group B drugs, linezolid (LZD) and cycloserine (CS), while omitting high-dose isoniazid (INH) for confirmed INH-resistant cases. BDQ duration will be extended from 6 to 9 months for participants with Mycobacterium tuberculosis-positive sputum cultures at week 16. The control arm will receive a modified STREAM regimen B without high-dose INH and injectable kanamycin (KM) that incorporates experimental arm LZD and CS dosages, treatment durations, and administration methods. LZD (600 mg) will be given daily for ≥ 24 weeks as guided by observed benefits and harm. The primary outcome measures the proportion of participants with favorable treatment outcomes at treatment completion (week 40), while the same measurement taken at 48 weeks post-treatment completion is the secondary outcome. Assuming an α = 0.025 significance level (one-sided test), 80% power, 15% non-inferiority margin, and 10% lost to follow-up rate, each arm requires 106 participants (212 total) to demonstrate non-inferiority. DISCUSSION: PROSPECT aims to assess the safety and efficacy of a BDQ-containing SCR MDR-TB treatment at seventeen sites across China, while also providing high-quality data to guide SCRs administration under the direction of the China National Tuberculosis Program for MDR-TB. Additionally, PROSPECT will explore the potential benefits of extending the administration of the 9-month BDQ-containing SCR for participants without sputum conversion by week 16. TRIAL REGISTRATION: ClinicalTrials.gov NCT05306223. Prospectively registered on 16 March 2022 at https://clinicaltrials.gov/ct2/show/NCT05306223?term=NCT05306223&draw=1&rank=1 {2}.


Subject(s)
Tuberculosis, Multidrug-Resistant , Tuberculosis , Adult , Humans , Antitubercular Agents , Clinical Trials, Phase IV as Topic , Diarylquinolines/adverse effects , Randomized Controlled Trials as Topic , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology
3.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(4): 371-375, 2024 Apr 12.
Article in Chinese | MEDLINE | ID: mdl-38599815

ABSTRACT

As a chronic infectious disease, tuberculosis (TB) is closely related to immune regulation and immune effect. Immunotherapy which can improve the curative effect of tuberculosis and control the spread of tuberculosis, is one of the important means for the comprehensive treatment of tuberculosis. From October 2022 to September 2023, research on the immunotherapy of tuberculosis at home and abroad continues to increase, providing new opportunities for the treatment of multidrug-resistant and extensively drug-resistant tuberculosis. Host-targeted therapy and therapeutic vaccines are new directions for research into TB adjuvant therapy.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis Vaccines , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Tuberculosis/prevention & control , Tuberculosis Vaccines/therapeutic use , Immunotherapy , Tuberculosis, Multidrug-Resistant/drug therapy
4.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(4): 376-382, 2024 Apr 12.
Article in Chinese | MEDLINE | ID: mdl-38599816

ABSTRACT

Tuberculosis, caused by infection with Mycobacterium tuberculosis (MTB), remains a global public health challenge. Multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) strains make tuberculosis more difficult to control. New tools to study the biology of MTB can identify novel targets for drug discovery. Recently, the Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) combined with next-generation sequencing has provided many novel insights into the physiology and genetics of MTB. This review summarizes the application and optimization of CRISPRi in MTB biology.


Subject(s)
Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Mycobacterium tuberculosis/genetics , Antitubercular Agents/therapeutic use , Clustered Regularly Interspaced Short Palindromic Repeats , Tuberculosis, Multidrug-Resistant/drug therapy , Extensively Drug-Resistant Tuberculosis/drug therapy , Biology , Microbial Sensitivity Tests
5.
Front Public Health ; 12: 1372389, 2024.
Article in English | MEDLINE | ID: mdl-38601494

ABSTRACT

Background: Mental health disorders in patients with multi-drug or rifampicin-resistant tuberculosis (MDR/RR-TB) receive consistent attention. Anxiety and depression can manifest and may impact disease progression in patients with MDR/RR-TB. Given the heightened stressors resulting from the COVID-19 pandemic, this scenario is even more concerning. Objective: To evaluate the prevalence of and risk factors associated with anxiety and depression among patients with MDR/RR-TB in southern China. Methods: A facility-based cross-sectional study was undertaken at Guangzhou Chest Hospital in southern China, encompassing a cohort of 219 patients undergoing outpatient and inpatient treatment for MDR/RR-TB. Anxiety and depressive symptoms were assessed using the 7-Item Generalized Anxiety Disorder (GAD-7) scale and Patient Health Questionnaire-9 (PHQ-9). The ramifications of anxiety and depression were examined using univariate and multivariate logistic regression analyses, with odds ratios (ORs) and age- and sex-adjusted ORs (AORs) employed to quantify their influence. All data underwent statistical analysis using SPSS 25.0, with statistical significance established at P < 0.05. Results: Two hundred and nineteen individuals with MDR/RR-TB were included in the study. The prevalence of anxiety and depression was 57.53% (n = 126) and 65.75% (n = 144), respectively, with 33.3% (n = 73) of the participants experiencing both conditions simultaneously. Multivariate logistic regression analysis revealed that an age of 20-40 years [anxiety AOR = 3.021, 95% confidence interval (CI): 1.240-7.360; depression AOR = 3.538, 95% CI: 1.219-10.268], disease stigma (anxiety AOR = 10.613, 95% CI: 2.966-37.975; depression AOR = 4.514, 95% CI: 2.051-10.108) and poor physical health (anxiety AOR = 7.636, 95% CI: 2.938-19.844; depression AOR = 6.190, 95% CI: 2.468-15.529) were significant risk factors for moderate levels of anxiety and depression. Conclusions: We found that individuals with MDR/RR-TB had an elevated risk of anxiety and depression. To decrease the likelihood of unfavorable treatment outcomes, it is imperative to carefully monitor the psychological wellbeing of patients with MDR/RR-TB and promptly address any detrimental psychiatric conditions.


Subject(s)
Rifampin , Tuberculosis, Multidrug-Resistant , Humans , Young Adult , Adult , Rifampin/therapeutic use , Depression/epidemiology , Prevalence , Cross-Sectional Studies , Pandemics , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Risk Factors , Anxiety/epidemiology , Anxiety Disorders/epidemiology
6.
BMC Infect Dis ; 24(1): 364, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38556907

ABSTRACT

BACKGROUND: The emergence of Drug Resistant Tuberculosis (DR-TB) is one of the main public health and economic problems facing the world today. DR-TB affects mostly those in economically productive years and prevents them from being part of the workforce needed for economic growth. The aim of this study was to determine the Clinical Profile and Outcomes of DR-TB in Central Province of Zambia. METHODS: This was a retrospective cross sectional study that involved a review of records of patients with confirmed DR-TB who were managed at Kabwe Central Hospital's Multi-Drug Resistant TB (MDR-TB) Ward from the year 2017 to 2021. 183 patients were managed during this period and all were recruited in the study. Data was collected from DR-TB registers and patient files and then entered in SPSS version 22 where all statistical analyses were performed. RESULTS: The study revealed that the prevalence of DR-TB among registered TB patients in Central Province was 1.4%. Majority of those affected were adults between the ages of 26 and 45 years (63.9%). The study also found that more than half of the patients were from Kabwe District (60.7%). Other districts with significant number of cases included Kapiri Mposhi 19 (10.4%), Chibombo 12 (6.6%), Chisamba 10 (5.5%), Mumbwa 7 (3.8%) and Mkushi 7 (3.8%). Furthermore, the analysis established that most of the patients had RR-TB (89.6%). 9.3% had MDR-TB, 0.5% had IR-TB and 0.5% had XDR-TB. RR-TB was present in 93.8% of new cases and 88.9% of relapse cases. MDR-TB was present in 6.2% of new cases and 10% of relapse cases. With regard to outcomes of DR-TB, the investigation revealed that 16.9% of the patients had been declared cured, 45.9% had completed treatment, 6% were lost to follow up and 21.3% had died. Risk factors for mortality on multivariate analysis included age 36-45 years (adjusted odds ratio [aOR] 0.253, 95% CI [0.70-0.908] p = 0.035) and male gender (aOR 0.261, 95% CI [0.107-0.638] p = 0.003). CONCLUSION: The research has shown beyond doubt that the burden of DR-TB in Central Province is high. The study recommends putting measures in place that will help improve surveillance, early detection, early initiation of treatment and proper follow up of patients.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Adult , Humans , Male , Middle Aged , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Cross-Sectional Studies , Prevalence , Recurrence , Retrospective Studies , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Zambia/epidemiology , Female
7.
Front Public Health ; 12: 1356826, 2024.
Article in English | MEDLINE | ID: mdl-38566794

ABSTRACT

Purpose: This study examined the patterns and frequency of genetic changes responsible for resistance to first-line (rifampicin and isoniazid), fluoroquinolones, and second-line injectable drugs in drug-resistant Mycobacterium tuberculosis (MTB) isolated from culture-positive pulmonary tuberculosis (PTB) symptomatic attendees of spiritual holy water sites (HWSs) in the Amhara region. Patients and methods: From June 2019 to March 2020, a cross-sectional study was carried out. A total of 122 culture-positive MTB isolates from PTB-suspected attendees of HWSs in the Amhara region were evaluated for their drug resistance profiles, and characterized gene mutations conferring resistance to rifampicin (RIF), isoniazid (INH), fluoroquinolones (FLQs), and second-line injectable drugs (SLIDs) using GenoType®MTBDRplus VER2.0 and GenoType®MTBDRsl VER2.0. Drug-resistant MTB isolates were Spoligotyped following the manufacturer's protocol. Results: Genetic changes (mutations) responsible for resistance to RIF, INH, and FLQs were identified in 15/122 (12.3%), 20/122 (16.4%), and 5/20 (25%) of MTB isolates, respectively. In RIF-resistant, rpoB/Ser531Lue (n = 12, 80%) was most frequent followed by His526Tyr (6.7%). Amongst INH-resistant isolates, katG/Ser315Thr1 (n = 19, 95%) was the most frequent. Of 15 MDR-TB, the majority (n = 12, 80%) isolates had mutations at both rpoB/Ser531Leu and katG/Ser315Thr1. All 20 INH and/or RIF-resistant isolates were tested with the MTBDRsl VER 2.0, yielding 5 FLQs-resistant isolates with gene mutations at rpoB/Ser531Lue, katG/Ser315Thr1, and gyrA/Asp94Ala genes. Of 20 Spoligotyped drug-resistant MTB isolates, the majority (n = 11, 55%) and 6 (30%) were SIT149/T3-ETH and SIT21/CAS1-Kili sublineages, respectively; and they were any INH-resistant (mono-hetero/multi-). Of 15 RIF-resistant (RR/MDR-TB) isolates, 7 were SIT149/T3-ETH, while 6 were SIT21/CAS1-Kili sublineages. FLQ resistance was detected in four SIT21/CAS1-Kili lineages. Conclusion: In the current study, the most common gene mutations responsible for resistance to INH, RIF, and FLQs were identified. SIT149/T3-ETH and SIT21/CAS1-Kili constitute the majority of drug-resistant TB (DR-TB) isolates. To further understand the complete spectrum of genetic changes/mutations and related genotypes, a sequencing technology is warranted.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis, Pulmonary , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Isoniazid/pharmacology , Rifampin/pharmacology , Ethiopia , Cross-Sectional Studies , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Pulmonary/microbiology , Mutation , Genotype , Fluoroquinolones
8.
PLoS One ; 19(4): e0301507, 2024.
Article in English | MEDLINE | ID: mdl-38564589

ABSTRACT

BACKGROUND: We compared the cost-consequence of a home-based multidrug-resistant tuberculosis (MDR-TB) model of care, based on task-shifting of directly observed therapy (DOT) and MDR-TB injection administration to lay health workers, to a routine clinic-based strategy within an established national TB programme in Eswatini. METHODS: Data on costs and effects of the two ambulatory models of MDR-TB care was collected using documentary data and interviews in the Lubombo and Shiselweni regions of Eswatini. Health system, patient and caregiver costs were assessed in 2014 in US$ using standard methods. Cost-consequence was calculated as the cost per patient successfully treated. RESULTS: In the clinic-based and home-based models of care, respectively, a total of 96 and 106 MDR-TB patients were enrolled in 2014, with treatment success rates of 67.8% and 82.1%. Health system costs per patient treated were slightly lower in the home-based strategy (US$19 598) compared to the clinic-based model (US$20 007). The largest costs in both models were for inpatient care, administration of DOT and injectable treatment, and drugs. Costs incurred by patients and caregivers were considerably higher in the clinic-based model of care due to the higher direct travel costs to the nearest clinic to receive DOT and injections daily. In total, MDR patients in the clinic-based strategy incurred average costs of US$670 compared to US$275 for MDR-TB patients in the home-based model. MDR-TB patients in the home-based programme, where DOT and injections was provided in their homes, only incurred out-of-pocket travel expenses for monthly outpatient treatment monitoring visits averaging US$100. The cost per successfully treated patient was US$31 106 and US$24 157 in the clinic-based and home-based models of care, respectively. The analysis showed that, in addition to the health benefits, direct and indirect costs for patients and their caregivers were lower in the home-based care model. CONCLUSION: The home-based strategy used less resources and generated substantial health and economic benefits, particularly for patients and their caregivers, and decision makers can consider this approach as an alternative to expand and optimise MDR-TB control in resource-limited settings. Further research to understand the appropriate mix of treatment support components that are most important for optimal clinical and public health outcomes in the ambulatory home-based model of MDR-TB care is necessary.


Subject(s)
Home Care Services , Tuberculosis, Multidrug-Resistant , Humans , Eswatini , Cost-Benefit Analysis , Tuberculosis, Multidrug-Resistant/drug therapy , Ambulatory Care , Antitubercular Agents/therapeutic use , Health Care Costs
9.
Nat Commun ; 15(1): 2962, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580642

ABSTRACT

The projected trajectory of multidrug resistant tuberculosis (MDR-TB) epidemics depends on the reproductive fitness of circulating strains of MDR M. tuberculosis (Mtb). Previous efforts to characterize the fitness of MDR Mtb have found that Mtb strains of the Beijing sublineage (Lineage 2.2.1) may be more prone to develop resistance and retain fitness in the presence of resistance-conferring mutations than other lineages. Using Mtb genome sequences from all culture-positive cases collected over two years in Moldova, we estimate the fitness of Ural (Lineage 4.2) and Beijing strains, the two lineages in which MDR is concentrated in the country. We estimate that the fitness of MDR Ural strains substantially exceeds that of other susceptible and MDR strains, and we identify several mutations specific to these MDR Ural strains. Our findings suggest that MDR Ural Mtb has been transmitting efficiently in Moldova and poses a substantial risk of spreading further in the region.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Moldova/epidemiology , Genotype , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Drug Resistance, Multiple, Bacterial/genetics
10.
Ann Clin Microbiol Antimicrob ; 23(1): 29, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581051

ABSTRACT

BACKGROUND: The prevalence of multidrug-resistant tuberculosis (MDR-TB) among Korean tuberculosis patients is about 4.1%, which is higher than the OECD average of 2.6%. Inadequate drug use and poor patient compliance increase MDR-TB prevalence through selective pressure. Therefore, prompt detection of drug resistance in tuberculosis patients at the time of diagnosis and quantitative monitoring of these resistant strains during treatment are crucial. METHODS: A multiplex droplet digital PCR (ddPCR) assay was developed and assessed using DNA material of nine Mycobacterium tuberculosis strains with known mutation status that were purchased from the Korean National Tuberculosis Association. We collected a total of 18 MDR-TB residual samples referred for PCR analysis. Total DNA was extracted from the samples and subjected to the quadruplex ddPCR assay. Their results were compared to those of known resistance phenotypes. RESULTS: The analytical sensitivity and specificity of the multiplex ddPCR assay for detecting INH, RIF, EMB, FQ, and SM resistance-causing mutations ranged from 71.43 to 100% and 94.12-100%, respectively. Follow-up sample results showed that the quadruplex ddPCR assay was sensitive enough to detect IS6110 and other mutations even after onset of treatment. CONCLUSIONS: We developed a sensitive and accurate multiplex ddPCR assay that can detect the presence of tuberculosis quantitatively and resistance-conveying mutations concurrently. This tool could aid clinicians in the diagnosis and treatment monitoring of tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Isoniazid/therapeutic use , Rifampin/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Polymerase Chain Reaction , Mutation , Sensitivity and Specificity , Microbial Sensitivity Tests , DNA/therapeutic use
11.
Biomed Environ Sci ; 37(2): 157-169, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38582978

ABSTRACT

Objective: China is among the 30 countries with a high burden of tuberculosis (TB) worldwide, and TB remains a public health concern. Kashgar Prefecture in the southern Xinjiang Autonomous Region is considered as one of the highest TB burden regions in China. However, molecular epidemiological studies of Kashgar are lacking. Methods: A population-based retrospective study was conducted using whole-genome sequencing (WGS) to determine the characteristics of drug resistance and the transmission patterns. Results: A total of 1,668 isolates collected in 2020 were classified into lineages 2 (46.0%), 3 (27.5%), and 4 (26.5%). The drug resistance rates revealed by WGS showed that the top three drugs in terms of the resistance rate were isoniazid (7.4%, 124/1,668), streptomycin (6.0%, 100/1,668), and rifampicin (3.3%, 55/1,668). The rate of rifampicin resistance was 1.8% (23/1,290) in the new cases and 9.4% (32/340) in the previously treated cases. Known resistance mutations were detected more frequently in lineage 2 strains than in lineage 3 or 4 strains, respectively: 18.6% vs. 8.7 or 9%, P < 0.001. The estimated proportion of recent transmissions was 25.9% (432/1,668). Multivariate logistic analyses indicated that sex, age, occupation, lineage, and drug resistance were the risk factors for recent transmission. Despite the low rate of drug resistance, drug-resistant strains had a higher risk of recent transmission than the susceptible strains (adjusted odds ratio, 1.414; 95% CI, 1.023-1.954; P = 0.036). Among all patients with drug-resistant tuberculosis (DR-TB), 78.4% (171/218) were attributed to the transmission of DR-TB strains. Conclusion: Our results suggest that drug-resistant strains are more transmissible than susceptible strains and that transmission is the major driving force of the current DR-TB epidemic in Kashgar.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Rifampin/pharmacology , Retrospective Studies , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Mutation
12.
BMC Genomics ; 25(1): 387, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643090

ABSTRACT

BACKGROUND: Drug-resistant tuberculosis (TB) is a major threat to global public health. Whole-genome sequencing (WGS) is a useful tool for species identification and drug resistance prediction, and many clinical laboratories are transitioning to WGS as a routine diagnostic tool. However, user-friendly and high-confidence automated bioinformatics tools are needed to rapidly identify M. tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM), detect drug resistance, and further guide treatment options. RESULTS: We developed GenoMycAnalyzer, a web-based software that integrates functions for identifying MTBC and NTM species, lineage and spoligotype prediction, variant calling, annotation, drug-resistance determination, and data visualization. The accuracy of GenoMycAnalyzer for genotypic drug susceptibility testing (gDST) was evaluated using 5,473 MTBC isolates that underwent phenotypic DST (pDST). The GenoMycAnalyzer database was built to predict the gDST for 15 antituberculosis drugs using the World Health Organization mutational catalogue. Compared to pDST, the sensitivity of drug susceptibilities by the GenoMycAnalyzer for first-line drugs ranged from 95.9% for rifampicin (95% CI 94.8-96.7%) to 79.6% for pyrazinamide (95% CI 76.9-82.2%), whereas those for second-line drugs ranged from 98.2% for levofloxacin (95% CI 90.1-100.0%) to 74.9% for capreomycin (95% CI 69.3-80.0%). Notably, the integration of large deletions of the four resistance-conferring genes increased gDST sensitivity. The specificity of drug susceptibilities by the GenoMycAnalyzer ranged from 98.7% for amikacin (95% CI 97.8-99.3%) to 79.5% for ethionamide (95% CI 76.4-82.3%). The incorporated Kraken2 software identified 1,284 mycobacterial species with an accuracy of 98.8%. GenoMycAnalyzer also perfectly predicted lineages for 1,935 MTBC and spoligotypes for 54 MTBC. CONCLUSIONS: GenoMycAnalyzer offers both web-based and graphical user interfaces, which can help biologists with limited access to high-performance computing systems or limited bioinformatics skills. By streamlining the interpretation of WGS data, the GenoMycAnalyzer has the potential to significantly impact TB management and contribute to global efforts to combat this infectious disease. GenoMycAnalyzer is available at http://www.mycochase.org .


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis/genetics , Microbial Sensitivity Tests , Tuberculosis, Multidrug-Resistant/drug therapy , Nontuberculous Mycobacteria , Drug Resistance , Internet
14.
Medicine (Baltimore) ; 103(15): e37643, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608104

ABSTRACT

To investigate the status of the drug-resistant tuberculosis (DR-TB) among children in Sichuan, and to find out the risk factors and high-risk population related to drug resistance among children. The clinical data of tuberculosis patients ≤14 years old with culture-confirmed tuberculosis hospitalized in Chengdu Public Health Clinical Center from January 2013 through December 2022 were collected. Clinical data such as gender, age, ethnicity, history of anti-TB treatment, history of exposure to tuberculosis, nutritional status, and specific drug resistance of the children were collected and recorded. The drug resistance of children in different age groups (0-4 years old, 5-9 years old, 10-14 years old) and different periods (2013-2017 and 2018-2022) were grouped and compared. Logistic regression analysis was to analyze analysis of risk factors of drug resistance in children. A total of 438 children with culture-confirmed tuberculosis were screened. Among them, 26.19% (11/42) were 0 to 4 years old, 33.33% (22/66) were 5 to 9 years old, and 36.67% (121/330) were 10 to 14 years old among the resistant children. There was no statistically significant difference in the resistance rate among the 3 groups (P = .385). The proportions of DR-TB, monoresistant tuberculosis, polydrug-resistant tuberculosis were decreased during 2019 to 2022 compared with 2013 to 2017 (P < .0001). The resistance rates of drug resistant, monoresistant, polydrug-resistant, isoniazid-resistant, and rifampicin resistant during 2018 to 2022 were decreased compared with those from 2013 to 2017 (P < .05), but the multi-drug resistance rate was not decreased (P = .131, without statistical difference). The results of logistic regression analysis showed that male gender OR = 1.566 (95% CI 1.035-2.369), a history of antituberculosis therapy OR = 4.049 (95% CI 1.442-11.367), and pulmonary and extrapulmonary tuberculosis OR = 7.335 (95% CI 1.401-38.392) were risk factors for the development of drug resistance; but fever OR = 0.581 (95% CI 0.355-0.950) was Protective factor. The total drug resistance rate of children in Sichuan showed a downward trend, but the rate of multi-drug-resistant tuberculosis was still at a high level, and the form of drug resistance was still severe. Absence of fever, male, retreatment, and pulmonary concurrent with extrapulmonary tuberculosis are risk factors for DR-TB in children.


Subject(s)
Tuberculosis, Extrapulmonary , Tuberculosis, Multidrug-Resistant , Child , Humans , Male , Infant, Newborn , Infant , Child, Preschool , Adolescent , Retrospective Studies , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Risk Factors , China/epidemiology , Fever
16.
Medicine (Baltimore) ; 103(12): e37617, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38518003

ABSTRACT

Multidrug-resistant tuberculosis (MDR-TB) has imposed a significant economic and health burden worldwide, notably in China. Using whole genome sequence, we sought to understand the mutation and transmission of MDR-TB in Shandong. A retrospective study of patients diagnosed with pulmonary tuberculosis in Shandong from 2009 to 2018 was conducted. To explore transmission patterns, we performed whole genome sequencing on MDR-TB isolates, identified genomic clusters, and assessed the drug resistance of TB isolates. Our study analyzed 167 isolates of MDR-TB, finding that 100 were clustered. The predominant lineage among MDR-TB isolates was lineage 2, specifically with a notable 88.6% belonging to lineage 2.2.1. Lineage 4 constituted a smaller proportion, accounting for 4.2% of the isolates. We discovered that Shandong has a significant clustering percentage for MDR-TB, with Jining having the highest percentage among all Shandong cities. The clustering percentages of MDR-TB, pre-extensively drug-resistant tuberculosis, and extensively drug-resistant tuberculosis were 59.9%, 66.0%, and 71.4%, respectively, and the clustering percentages increased with the expansion of the anti-TB spectrum. Isolates from genomic clusters 1 and 3 belonged to lineage 2.2.1 and showed signs of cross-regional transmission. The distribution of rrs A1401G and katG S315T mutations in lineage 2.2.1 and 2.2.2 strains differed significantly (P < .05). MDR-TB isolates with rpoB I480V, embA-12C > T, and rrs A1401G mutations showed a higher likelihood of clustering (P < .05). Our findings indicate a significant problem of local transmission of MDR-TB in Shandong, China. Beijing lineage isolates and some drug-resistant mutations account for the MDR-TB transmission in Shandong.


Subject(s)
Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Extensively Drug-Resistant Tuberculosis/epidemiology , Extensively Drug-Resistant Tuberculosis/drug therapy , Drug Resistance, Multiple, Bacterial/genetics , Retrospective Studies , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Mutation , China/epidemiology , Microbial Sensitivity Tests , Genotype
17.
Rev Prat ; 74(3): 239-244, 2024 Mar.
Article in French | MEDLINE | ID: mdl-38551855

ABSTRACT

ADVANCES IN ANTIBIOTIC THERAPY FOR TUBERCULOSIS. Treatment of tuberculosis is experiencing significant advancements. For the first time, a therapeutic regimen based on rifapentine and moxifloxacin allows for a reduction of treatment duration of drug-susceptible tuberculosis from 6 to 4 months. Regarding multidrug-resistant tuberculosis, combinations of new antituberculosis drugs (bedaquiline, linezolid, delamanid/pretomanid, moxifloxacin) have the potential to reduce the treatment duration from 20 to 6 months. Additionally, considering the extent of anatomical involvement and bacterial burden allows for strategies that involve variable treatment durations based on the severity of the disease. The new tuberculosis treatments thus appear to be shorter and more personalized.


AVANCÉES DANS L'ANTIBIOTHÉRAPIE DE LA TUBERCULOSE. Le traitement de la tuberculose connaît de grandes avancées. Pour la première fois, un protocole thérapeutique à base de rifapentine et moxifloxacine permet de réduire de six à quatre mois la durée du traitement des tuberculoses à bacilles sensibles. S'agissant des tuberculoses à bacilles multirésistants, des combinaisons de nouveaux antituberculeux (bédaquiline, linézolide, délamanide-prétomanide, moxifloxacine) permettent de réduire de vingt à six mois la durée du traitement. Enfin, la prise en compte de l'importance de l'atteinte anatomique et de la charge bacillaire permet d'envisager des stratégies incluant des durées de traitement variables selon l'importance de l'atteinte. Les nouveaux traitements de la tuberculose apparaissent donc plus courts et plus personnalisés.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Antitubercular Agents/therapeutic use , Moxifloxacin/therapeutic use , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Linezolid/therapeutic use
18.
Med J Malaysia ; 79(2): 212-221, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38553929

ABSTRACT

INTRODUCTION: Inappropriate treatment and non-adherence use of anti-tuberculosis (TB) drugs trigger the spread of multidrug-resistant tuberculosis (MDR-TB) strains and causes an emerging public health threat worldwide. Therefore, non-adherence to MDR-TB treatment leading to prolonged medication period, increase incidence of adverse event and financial burden, thus it requires interventions to achieve a therapeutic outcome. OBJECTIVE: This scoping review aims to provide an overview of interventions to improve the adherence level to medication of MDR-TB patients. MATERIALS AND METHODS: A review of observational studies was conducted to discuss the accuracy, tolerability and ease of use of tonometers in measuring IOP in children with glaucoma. Three databases (PubMed, Web of Science, Scopus) were used in a scoping review. The data were synthesised using Rayyan AI. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to guide this review. RESULTS: A total of 11 articles were included in this review to describe the various interventions in MDR-TB treatment adherence. Psychological counselling or education intervention was the most popular intervention, and it significantly increased adherence levels among MDR-TB patients. Increased adherence level patients also reported by interventions with Medication Event Reminder Monitor (MERM), Video Directly Observed Therapy (VDOT), 30-day recall and Visual Analogue Scale (VAS), Financial Support, mHealth Application and directly observed therapy, short course (DOTS) and DOTS-Plus programs. However, we found that Electronic Dose Monitoring (EDM) device intervention has less effect on MDR-TB patients' adherence. CONCLUSION: The recovery of patients can be facilitated through MDR-TB treatment adherence interventions. It is acknowledged that the studies included in this review exhibit heterogeneity, with a majority showing significant improvement. Therefore, further study was required to investigate the specific on developing highly personalised interventions tailored to specific population or context, as well as to assess the cost-effectiveness of such interventions.


Subject(s)
Tuberculosis, Multidrug-Resistant , Child , Humans , Tuberculosis, Multidrug-Resistant/drug therapy , Antitubercular Agents/therapeutic use , Medication Adherence
19.
BMJ Glob Health ; 9(3)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548342

ABSTRACT

BACKGROUND: Global tuberculosis (TB) drug resistance (DR) surveillance focuses on rifampicin. We examined the potential of public and surveillance Mycobacterium tuberculosis (Mtb) whole-genome sequencing (WGS) data, to generate expanded country-level resistance prevalence estimates (antibiograms) using in silico resistance prediction. METHODS: We curated and quality-controlled Mtb WGS data. We used a validated random forest model to predict phenotypic resistance to 12 drugs and bias-corrected for model performance, outbreak sampling and rifampicin resistance oversampling. Validation leveraged a national DR survey conducted in South Africa. RESULTS: Mtb isolates from 29 countries (n=19 149) met sequence quality criteria. Global marginal genotypic resistance among mono-resistant TB estimates overlapped with the South African DR survey, except for isoniazid, ethionamide and second-line injectables, which were underestimated (n=3134). Among multidrug resistant (MDR) TB (n=268), estimates overlapped for the fluoroquinolones but overestimated other drugs. Globally pooled mono-resistance to isoniazid was 10.9% (95% CI: 10.2-11.7%, n=14 012). Mono-levofloxacin resistance rates were highest in South Asia (Pakistan 3.4% (0.1-11%), n=111 and India 2.8% (0.08-9.4%), n=114). Given the recent interest in drugs enhancing ethionamide activity and their expected activity against isolates with resistance discordance between isoniazid and ethionamide, we measured this rate and found it to be high at 74.4% (IQR: 64.5-79.7%) of isoniazid-resistant isolates predicted to be ethionamide susceptible. The global susceptibility rate to pyrazinamide and levofloxacin among MDR was 15.1% (95% CI: 10.2-19.9%, n=3964). CONCLUSIONS: This is the first attempt at global Mtb antibiogram estimation. DR prevalence in Mtb can be reliably estimated using public WGS and phenotypic resistance prediction for key antibiotics, but public WGS data demonstrates oversampling of isolates with higher resistance levels than MDR. Nevertheless, our results raise concerns about the empiric use of short-course fluoroquinolone regimens for drug-susceptible TB in South Asia and indicate underutilisation of ethionamide in MDR treatment.


Subject(s)
Antitubercular Agents , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Isoniazid/pharmacology , Isoniazid/therapeutic use , Ethionamide/therapeutic use , Rifampin/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Genomics , Microbial Sensitivity Tests , Machine Learning
20.
Int J Pharm ; 654: 123984, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38461874

ABSTRACT

Both latent and multidrug-resistant tuberculosis (TB) have been causing significant concern worldwide. A novel drug, pretomanid (PA-824), has shown a potent bactericidal effect against both active and latent forms of Mycobacterium tuberculosis (MTb) and a synergistic effect when combined with pyrazinamide and moxifloxacin. This study aimed to develop triple combination spray dried inhalable formulations composed of antitubercular drugs, pretomanid, moxifloxacin, and pyrazinamide (1:2:8 w/w/w), alone (PaMP) and in combination with an aerosolization enhancer, L-leucine (20 % w/w, PaMPL). The formulation PaMPL consisted of hollow, spherical, dimpled particles (<5 µm) and showed good aerosolization behaviour with a fine particle fraction of 70 %. Solid-state characterization of formulations with and without L-leucine confirmed the amorphous nature of moxifloxacin and pretomanid and the crystalline nature of pyrazinamide with polymorphic transformation after the spray drying process. Further, the X-ray photoelectron spectroscopic analysis revealed the predominant surface composition of L-leucine on PaMPL dry powder particles. The dose-response cytotoxicity results showed pyrazinamide and moxifloxacin were non-toxic in both A549 and Calu-3 cell lines up to 150 µg/mL. However, the cell viability gradually decreased to 50 % when the pretomanid concentration increased to 150 µg/mL. The in vitro efficacy studies demonstrated that the triple combination formulation had more prominent antibacterial activity with a minimum inhibitory concentration (MIC) of 1 µg/mL against the MTb H37Rv strain as compared to individual drugs. In conclusion, the triple combination of pretomanid, moxifloxacin, and pyrazinamide as an inhalable dry powder formulation will potentially improve treatment efficacy with fewer systemic side effects in patients suffering from latent and multidrug-resistant TB.


Subject(s)
Nitroimidazoles , Pyrazinamide , Tuberculosis, Multidrug-Resistant , Humans , Pyrazinamide/pharmacology , Pyrazinamide/chemistry , Moxifloxacin/pharmacology , Moxifloxacin/chemistry , Powders/chemistry , Leucine/chemistry , Aerosols/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Tuberculosis, Multidrug-Resistant/drug therapy , Administration, Inhalation , Dry Powder Inhalers/methods , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...